
Portal Stargaze
source, map, and predict innovation with hybrid-AI.
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Other disciplines use machine learning to 
understand trends and uncover leads
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GenomicsFinance Drug Discovery Medicine

Stargaze does this for Innovation



Envision science as a universe containing 
millions of stars.
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Each star is a patent, a paper, a grant, a 
clinical trial, an inventor, or a company. 

Like in our universe, these stars form 
galaxies that move, collide, change shape, 
heat up, and cool down.

Stargaze uses breakthroughs in AI and 
metascience to resolve their coordinates, 
track their motion, and measure their 
properties. 

100 Years of Innovation at Mayo Clinic
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100 Years of Innovation at Mayo Clinic

Targeted delivery

Molecular Diagnostics

Interventional
Cardiology

Medical Physics

With Stargaze we can see the landscape of 
innovation with unmatched depth & richness
Predict where biotech innovation is 
headed next

Discover “innovation biomarkers” that 
identify startup-ready science

Surface early-career superstars, before 
they make their splash

Harness these signals to make 
investments
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BIOTECH HYPERGRAPH™

At the heart of Stargaze is Biotech 
Hypergraph, a quantitative representation 
of biotech innovation over the last 20 years. 

We utilize context-trained language models 
to “read” every biotech patent, grant, 
publication, and financing. We then 
connect and plot them, like stars, in a 500- 
dimension representation of the biotech 
universe. 

KNOWLEDGE CLUSTERS™

Having mapped each star in the biotech 
universe, we use proprietary algorithms to 
identify clusters of scientific activity. Like 
astronomers, we zoom out to look at clusters 
as large as galaxies (e.g. SynBio) or zoom in to 
look at clusters as small as solar systems (e.g. 
virus-like nanoparticles).

By tracking clusters over time, we see which 
are growing, and which are shrinking. We track 
which are moving closer together, and which 
are moving apart. And we foresee which are 
more likely to generate massive stars and 
those that are on the fast track to cosmic dust. 

INNOVATION ECOTYPES™

Each cluster contains hundreds of unique 
stars: each a single scientific researcher with a 
unique research fingerprint. 

By measuring how all these stars change over 
time, we predict the path that a star is likely to 
follow. 

Most will remain relatively small and low 
energy. Some will become big, but in the 
wrong innovation cluster they will lose energy 
fast. A select few will become massive, high 
energy stars that change the course of 
biotech. 

Our fine-tuned models build on the most 
recent advances in AI
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Example Outputs
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Vector Atlas uncovers clusters of innovation
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Papers Patents StartupsGrants
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Celestial motion models track innovators 
within innovation hotbeds
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Celestial motion models track innovators 
within innovation hotbeds
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• The cluster has a strong gravitational pull
• Significant majority of researchers fall above the x=y line

• The “core” is very stable and patent-dense (quadrant 2)
• Suggests that the researchers at the center are staying there
• Suggests that the questions animating them are translational (as opposed to theoretical).
• Suggests that this cluster remains very hot

• Emerging core researchers are young and hungry (quadrant 1) 
• James Kaczmarek (Sana)
• Steven Jonas (UCLA)
• Raman Bahal (Uconn)

• Very few core researchers are moving on (quadrant 3)
• Robert C. Robbins – became Chancellor at University of Arizona
• Emmanouil Karagiannis – Left academia to launch Senda Biosciences
• Sahishnu Patel - 
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Celestial Motion Takeaways

https://www.linkedin.com/in/jameskaczmarek/
https://www.uclahealth.org/providers/steven-jonas
https://pharmacy.uconn.edu/person/raman-bahal/


Supervised learning models predict which 
researchers will make groundbreaking 
discoveries
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Starcharts make it interactive & accessible

Intuitive, custom dashboards:

• interact with the data 
• visualize insights
• explore your own hypotheses
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Case Studies



Case Study: Align innovation strategy with 
the pace of science

Questions we answered:

• What is the structure of (e.g.) nucleic acid delivery in the US?
• What are the most promising subfields for startup creation? 
• Which fields are most heavily crosspollinating? 
• How does this map to geographies and institutions?
• Which labs are driving the next wave?
• How is this changing over time?
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Case Study: Sourcing-as-a-service
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Questions we answered:

• How do I skep the TTO and go right to the source of innovation?
• Who are the true innovators in the ocean of researchers we're seeing?
• We've found a great lab with research we love. How do we surround it with 
the right people and resources, and create a VC-backable venture?



Case Study: Protect and expand a 
strategic asset class

Questions we answered:

• How do I spot the most promising technologies in gut inflammation?
• Which early researchers do I need to forge a relationship with?
• Which geographies should I focus on?
• How do I maintain an informational edge over my competitors?
• How do I inject AI into my internal BD / External Innovation capabilities?
• How do I do this FAST, before my competitors?
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Case Study: 
Exact Sciences
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Exact Sciences & David Ahlquist

In 2008, Exact Sciences, a cancer detection 
company based on a discovery out of Case 
Western, was on the rocks and nearly out of 
runway.

In June 2009, they cleared the deck, hired a 
new management team, and ”re-founded” 
the company on a technology developed by 
David Ahlquist and his lab at Mayo Clinic.

Their big bet turned a near-failure into a 
thriving name-brand in a matter of years.

• Why did Exact Science’s bet on David 
Ahlquist pay off? 

• Stargaze uncovers “innovation biomarkers” 
in his research leading up to the 
Mayo/Exact Sciences deal that changed 
everything.

• Stargaze can apply these biomarkers to 
the search for future David Ahlquists.
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1975-1985: Setting Anchor

• 1975: First paper describes a new 
assay for hemoglobin in the stool.

• 1983: Joins Mayo Faculty

• 1983: Publishes first of a series of 
“HemoQuant Test” papers

• 1985: First big grant – Apply 
HemoQuant to Cancer

Insights:

• No Patents during this period

• “Anchor Research” area– Fecal 
Assays – has already taken hold.

• First grant predicts where his core 
patents will appear, 30 years later!

Clinical Studies

Fecal Assays

First paper

First Grant

Papers: 6
NIH Grants: 1 ($156,714)
Patents: 0
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1985-1999: Zeroing In

• 1985-1992: Ahlquist goes all in on 
blood-based assays of the stool.

• 1992: Publishes a retrospective 
concluding that blood-based stools 
are not the way forward.

• 1992-1999: First patent emerge as he 
begins searching for a new path.

First Patents:

• US62178196 (1998): 
“Chemoprevention of metachronous 
adenomatous colorectal polyps”

• US62501596 (1999): “Methods of 
recovering colorectal epithelial cells 
or fragments thereof from stool"

Clinical Studies

Fecal Assays

Key 1992 
Paper

1998 Patent

1999 Patent

Papers: 14
NIH Grants: 6 ($1,133,189)
Patents: 1
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1999-2008: Exploring New Avenues

As Ahlquist searches for alternatives to 
blood-based screening, he expands his 
aperture to focus on three distinct 
topics.
• DNA Methylation
• Screening Assay techniques
• CT Colography

Insights:
In the cycle that leads to Ahlquists 
transformational agreement with 
Cologuard, we see:

• A major increase in publishing and 
grant getting in his anchor

• A major expansion of his topics of 
inquiry outside of his anchor

• A 9-year pause in patenting

Colorectal Cancer 
Screening with
CT Colography

Methylation Markers for 
Accurate Classification 
of Disease

Screening Assays for 
Colorectal Cancer

Fecal Assays

Papers: 23
NIH Grants: 6 ($6,902,196)
Patents: 0
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2008-2014: Doubling Down
From 2008 onward, Ahlquist is 
focused on advancing his 
innovations via Exact Sciences.

• No NIH Grants

• Lots of Patents & Papers, all 
focused on fecal assays

  

Fecal Assays

Papers: 14
NIH Grants: 0
Patents: 5
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2014-2020: Applying the breakthrough

Methylation Markers for 
Accurate Classification 
of Disease

• Patenting explodes, focusing on 
detecting a slew of specific 
cancers.

• Patents directly overlay his first 
major grant.

• Ahlquist broadens his scope 
again, focusing on the next big 
discovery.

• 2020 – Ahlquist passes away 
from ALS after a life spent 
transforming how CRC is 
detected and treated.

Fecal Assays

Microbiome
Sequencing

Methylation
Assays

Patents for 
Detecting 
Various 
Cancers

Clinical Studies

Papers: 20
NIH Grants: 0
Patents: 23
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Timing the Innovation Cycle Right Matters

IPO
($14/share)

Cologuard 
Adopted by ACS

($20/share)

Mayo/Exact 
Sciences Deal
($0.42/share)
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Lessons from the Mayo / Exact Sciences

Visualizing a scientist’s “research anchor” shows 
where they are most likely to generate a 
breakthrough.

Understanding their “innovation cycle” shows when 
their innovation is ripe for commercialization (and 
when it is not).

Stargaze makes this possible, quantitatively and at 
scale, for the first time.

1)

2)

3)
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A recipe for finding future Ahlquists

1. Quantify & visualize the innovation landscape of interest

2. Zero in on clusters that exhibit promising Innovation Biomarkers

3. Classify specific researchers likely to generate a breakthrough 

4. Zoom in on those within the ”translational phase” of their innovation cycle. 

5. Engage.

6. Repeat



Partner with us
• Introductory Starchart: 50k

• Diligence Advisory: 25k to 50k / deal

• Innovation Advisory: 250 to 750k / engagement
• Quickly understand an emerging technology
• Protect / expand an asset or technology class
• Understand an innovation cluster

• Sourcing-as-a-Service: bespoke
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GenAI for the Scientific Knowledge Graph



Hybrid-AI: Experts & AI work better together
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Custom scientific knowledge graphs

Fine-tuned AI Models

In-house venture investors 
and subject-matter experts

Raw 
Data

• Innovators
• Deals
• Insights
• Predictions
• Strategies
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Database
Scientific 
Knowledge 

Graph

Scientific 
Knowledge 

Graph

User Interface

Subject Matter 
Experts

Where Stargaze Stacks Up

Specialized
Databases

Academic
Theory

Data Search
Engines

Quant
Firms

Raw Data

Papers

Fine-tuned 
quant models

Fine-tuned AI 
models

STARGAZE


